Fuzzy Multi-objective Permutation Flow Shop Scheduling Problem with Fuzzy Processing Times under Learning and Aging Effects
Authors
Abstract:
In industries machine maintenance is used in order to avoid untimely machine fails as well as to improve production effectiveness. This research regards a permutation flow shop scheduling problem with aging and learning effects considering maintenance process. In this study, it is assumed that each machine may be subject to at most one maintenance activity during the planning horizon. The objectives aim to minimize the makespan, tardiness of jobs, tardiness cost while maximizing net present value, simultaneously. Due to complexity and Np-hardness of the problem, two Pareto-based multi-objective evolutionary algorithms including non-dominated ranked genetic algorithm (NRGA) and non-dominated sorting genetic algorithm (NSGA-II) are proposed to attain Pareto solutions. In order to demonstrate applicability of the proposed methodology, a real-world application in polymer manufacturing industry is considered.
similar resources
A Mathematical Model for a Flow Shop Scheduling Problem with Fuzzy Processing Times
This paper presents a mathematical model for a flow shop scheduling problem consisting of m machine and n jobs with fuzzy processing times that can be estimated as independent stochastic or fuzzy numbers. In the traditional flow shop scheduling problem, the typical objective is to minimize the makespan). However,, two significant criteria for each schedule in stochastic models are: expectable m...
full texta mathematical model for a flow shop scheduling problem with fuzzy processing times
this paper presents a mathematical model for a flow shop scheduling problem consisting of m machine and n jobs with fuzzy processing times that can be estimated as independent stochastic or fuzzy numbers. in the traditional flow shop scheduling problem, the typical objective is to minimize the makespan). however,, two significant criteria for each schedule in stochastic models are: expectable m...
full textMulti-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect
This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance. First the problem is encoded with a...
full textGenetic Algorithm with Selective Local Search for Multi-objective Permutation Flow Shop Scheduling Problem
In this paper the flow shop scheduling problem with minimizing two criteria simultaneously is consider. Selected criteria are: makespan and the sum of tardiness of jobs. For each separate criteria the problem is strongly NP-hard, which makes it NP-hard as well. There is a number of heuristic algorithms to solve the flow shop problem with various single objectives, but heuristics for multi-crite...
full textA multi-objective genetic algorithm (MOGA) for hybrid flow shop scheduling problem with assembly operation
Scheduling for a two-stage production system is one of the most common problems in production management. In this production system, a number of products are produced and each product is assembled from a set of parts. The parts are produced in the first stage that is a fabrication stage and then they are assembled in the second stage that usually is an assembly stage. In this article, the first...
full textMulti-objective optimization with fuzzy measures and its application to flow-shop scheduling
Most of the research in multi-objective scheduling optimization uses the classical weighted arithmetic mean operator to aggregate the various optimization criteria. However, there are scheduling problems where criteria are considered interact and thus a different operator should be adopted. This paper is devoted to the search of Pareto-optimal solutions in a tri-criterion flow-shop scheduling p...
full textMy Resources
Journal title
volume 3 issue 2
pages 77- 98
publication date 2018-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023